Rapid Detection of Candida species Isolated from Denture Stomatitis Patients using Phenotypic methods and Chromogenic agar media

Haifa Abdul Ghani Abdulla
BSc., Master Student

Eman A. Mustafa
BSc, MSc.(Asst.Prof.)

Department of Dental Basic Sciences
College of Dentistry, University of Mosul

ABSTRACT

Aims: The purpose of this study was Isolation and phenotypic identification of different candida species isolated from denture stomatitis patients. Materials and Methods: Over all 62 isolates of Candida species yielded from 43 patients attending prosthodontic department\College of Dentistry\Mosul university\Dental teaching Hospital. Clinically, the samples processed by traditional methods including culture characteristics, gram staining reaction, germ tube, chlamydospore formation, culture on CHROM agar Candida, Sabouraud Dextrose agar, urea’s test and Carbohydrates fermentation test. Results: All isolates were accurately diagnosed to the species level by various traditional methods, among the total of 62 Candida species, the predominant type was the Candida albicans which accounted for (46.8%) followed by Candida glabrata (33.9%), Candida tropicalis (17.7%), finally the species Candida krusei accounted for (1.6%). Conclusions: Candida albicans is highly spreading among patients wearing dentures particularly those suffering from denture stomatitis in which CHROM agar Candida medium is best method for rapid identification and documentation of different Candida species.

Key words: Candida species, Denture stomatitis, Phenotypic methods, CHROM agar Candida medium.

Received: 19/3/2020 Sent to Referees: 20/3/2020 Accepted for Publication: 26/4/2020
INTRODUCTION

Candida species are regarded the most common isolated and the frequent etiological factor of denture stomatitis (1). Approximately 300 *Candida* species are documented, 10% can cause infections in human (2). Different species of Candida are described as a communal microorganisms, they exist in 30-60 % of healthy people and 60-100% of patient with denture stomatitis (3,4); non albicans species including *Candida glabrata*, *Candida tropicalis*, *Candida parapsilosis*, and *Candida krusei* etc. also appeared as etiological agents in oral candidiosis either as a co-infection with *C.albicans* or as a sole pathogenic microorganism (4,5). There are different conventional methods for identification of yeast such as: culture on sabouraud dextrose agar (SDA) media, corn meal agar (CMA), germ tube test, carbohydrate fermentation test, and in order to accelerate detection of candida CHROM agar are used as a selective and differential media which inhibit the growth of any microorganisms except candida (6). The component of this media, yeast extract, chromopepton, chromogen mixture, chloramphenicol and agar allowing identification of candida isolates by their color and colony aspect, special colony with different colors appear on this media due to chromogenic substrates which react with enzymes produced by candida therefore, chromogenic media has the ability to differentiate mixed candida and yeast infections (6).

MATERIALS AND METHODS

1- Sample collection:

Patient selection in this study including: elderly adult patients, suffering from stomatitis. Their ages range (50-85) years old, wearing complete denture, the age of denture range (5-20) years, patients who have taken antifungal drugs were excluded from the samples, at least three month ago. Swaps were gained from 43 patients who attending Dental teaching Hospital College of Dentistry Mosul university. Specimens were collected after clinical diagnosis by scraping sterile swabs across the palatal mucosa in contact with the denture and the inner surface of denture, then swabs were transferred into 2ml sterile nutrient broth vials.

Microbiological work

All samples were primarily cultured on sabouraud dextrose agar (SDA) adding chloramphenicol 50mg/L to inhibit bacterial growth, and incubated at 37°C for 24-48 hrs, to ensure that all *Candida spp* in samples were isolated. The identification to species level was carried out:

A- Gram staining reaction for all specimens.

B- Germ tube production (GT).

To differentiate between *C. albicans* from non albicans groups, human blood was
placed in test tube and left in rack to clot, after clotting the sample centrifuged at 3000 rpm for 10 min, serum was separated carefully and placed in sterile test tube and then colony was picked up with sterile loop and was placed in 0.5 ml of serum, this mixture was placed in an incubator at 37 C° for 3-4 hrs. Adrop of this mixture was placed, put on a clean slid, overlaid with a clean cover slip and examined by high power objective lens of microscope (40x) (7)

C- Chlamydospor production:

The colony was picked up from selective media and then was cultured on 1cm x shape in corn meal agar, covered with sterile cover slip the plate incubated at room temperature for 48-72 hrs. then examined under 40x (8).

D- Chromogenic agar medium:

All samples were cultured on to CHROM agar Candida (Hi media, M.I.D.C., India), then the plates were incubated at 37 C° for 24-48 hrs. (9,10)

E- Carbohydrate fermentation test:

This test based on sugars fermentation and prepared according to Knenman et al. (11)

F- Ureas's test: The isolated colonies was inoculated on urea base agar within test tubes and after incubation the color of indicator (phenol red) was changed from yellow to pink color as a positive result (9,12).

The results were analyzed statistically by using Q square, all data analyzed statistically significant value at p < 0.05 was considered by using sigma sat program (13).

RESULT

The distribution of *Candida species* in this study exhibited no significance in both sex male and female (p=0.388), Figure (1).

Figure (1): distribution of Denture Stomatitis in male and female
This study was achieved to identify different species of candida in clinical samples. Twenty nine isolates of *C. albicans* identified by germ tube test, while other Candida species were negative. Twenty nine species of *C. albicans* produce chlamydospore and only two species of *C. tropicalis* gave positive result (Table1).

Table (1): Identification of Candida species by germ tube and chlamydospore formation

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Total</th>
<th>Germ tube formation</th>
<th>Chlamydospores formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>positive Negative</td>
<td>Positive Negative</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>29</td>
<td>29 0</td>
<td>29 0</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>21</td>
<td>0 21</td>
<td>0 21</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>11</td>
<td>0 11</td>
<td>2 9</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Out of 62 isolated Candida, 29(46.8%) isolates were detected as *C. albicans* by CHRom agar, 21(33.9%) isolates as *C. glabrata*, 11(17.7%) isolates as *C. tropicalis* and only 1(1.6%) isolate of *C. krusei* (Table 2) the distribution of Candida species were shown in Figure (2) . gram's staining findings, the shape and the size of blastoconidia have been shown in (Figure 3). Germ tube and were chlamydospore formation tests were used for identification of Candida spp. (Figure 4).

Table (2): Identification of candida species by using CHRom agar

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Colony characteristic on CHRomogenic agar</th>
<th>No. of isolates total (62)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>Light smooth green colonies</td>
<td>29</td>
<td>46.8%</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>White large glossy pale pink colonies</td>
<td>21</td>
<td>33.9%</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>Steel blue with violet shade</td>
<td>11</td>
<td>17.7%</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>Pink with white borders rough colonies</td>
<td>1</td>
<td>1.6%</td>
</tr>
</tbody>
</table>
Figure (2): Distribution of *Candida spp*

Figure (3): Gram stain of *Candida species* A- *C.albicans* B- *C.glabrata*
C- *C.tropicalis* D- *C.krusei*

Figure (4): Detection of *Candida spp*. By Germ tube(left) and Chlamydomspore formation (right)
Different species of Candida were detected by culturing on SDA and CHROM agar Candida medium (Figure 5). On CHROM agar, the diverse species of Candida revealed different color colonies (Table 2). Carbohydrate fermentation and ureas test that were used to confirm the growth of candida isolates were shown in (Table 3) and only Candida krusei changed the urea base agar to pink color as a positive result of ureas test (Figure 6).

Table (3): Biochemical reaction of isolated Candida species

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Fermentation of carbohydrates</th>
<th>Ureas's test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glu</td>
<td>Mal</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>

$F^* =$ Fermenter $V^* =$ variable

Figure (5): (A) The colony of Candida spp. on SDA agar, (B) Candida albicans, (C) all Candida species, (D) Candida krusei on CHRom agar
DISCUSSION

In present study C. albicans appeared as a predominant isolates in patients with DS agreed with other studies that found the same result \(^{(14,15,16)}\). The results of this study exhibited that there is no significant distribution of candida between male and female. all C. albicans strains and few strains of C. tropicalis form chlamydospore on nutritionally insufficient media such as corn meal agar. Thus this method can be used to determine these species and this result agreed with other studies \(^{(2,9)}\) and all isolates of C. albicans form germ tube while the other species cannot produce it \(^{(9)}\). depending on several studies carried out in universities and hospitals, 65% of denture users suffer from problems caused by candida albicans \(^{(17)}\).

CHROM agar Candida medium is present as a novel medium which helped in isolation and differentiation of different species of Candida according on different colors and morphology of colonies\(^{(4,9,18)}\). CHROM agar Candida medium in each liter contained peptone (10 g), glucose (20 g), agar (15 g), and chloramphenicol (0.5 g) and Chromogenic mixture (2 g), while pH of the medium was maintained at 6.1 according to instructions of manufacturer, for this reason this medium aided in differentiation between different species of Candida and this data was confirmed by another study carried out by Horvath et al \(^{(18)}\), in this study all 62 isolates which obtained from 43 patients produced distinct colors on CHROM agar and were grown well on this medium and this agrees with the truth that this medium act as a good differential medium, having good performance, less time consuming, having sensitivity for isolation and determination of Candida species \(^{(19)}\). Other study conducted by Lynn et al. noted that CHROM agar quickly identify C. albicans.
, C. glabrata, C. tropicalis and C. kruzei based on different colors and morphological features of colonies CHROM agar candida gave a fast recognition repeatedly found yeast species which would usually be missed during traditional plating on solid media\cite{18}. Among 43 samples grown on CHROM agar Candida medium plates, twenty-nine isolates of C. albicans showed light smooth green colonies, twenty-one isolates of C. glabrata showed white large glossy pale pink colonies, eleven isolates of C. tropicalis appeared as steel blue with violet shade or as a dark blue colonies and one isolate of C. kruzei showed as pink with white borders rough colonies. (Table 2) This characteristic of candida colonies on CHROM agar agreed with different study\cite{10,20}

CONCLUSIONS

In conclusion, this study reveals that CHROM agar Candida media having good potential for rapid identification of Candida species and this media can be used as a useful adjunctive media in the clinical laboratory for detection of Candida species.

ACKNOWLEDGMENTS

The authors thank the Department of prosthodontic and the Department of basic science in the college of Dentistry, University of Mosul for supporting this study.

REFERENCES

7- Gupta V, Abhisheik K, Balasundari S, Devandra N, Shadab K and Anupama M. Identification of Candida albicans using different culture media and its association...

8- Bharathi R. Comparison of chromogenic media with the corn meal agar for speciation of Candida. *JPURE APPL Microbiol*. 2018; 12(3) 1617-1622

14- Peric M, Zivkovic R, Lemic A, Radunovic M, Milicic B and Arsenijevic A. The severity of denture stomatitis as related to risk factors and different Candida spp . *Oral Surg*. 2018; (Accepted Manuscript)

