ABSTRACT

Aims: The aim of the study is to determine the effects of different suturing techniques on post-operative complications (pain and swelling) following the removal of impacted lower wisdom teeth. Materials and Methods: Sixty medically fit patients were randomly selected with an age range between 16–42 years of both sexes. They were divided into 3 groups. These patients had impacted lower third molars indicated for surgical extraction. The first group comprised of twenty patients, the flap would be closed by simple interrupted suturing technique, and in the second group (20 patients) by vertical mattress suturing technique, and anchoring suture techniques for the third group (20 patients). All groups will be compared by clinical assessment to determine post-operative complications including pain and swelling. Results: In all treatment groups, pain (on VAS) reached its peak on the first post-operative day then faded away. In all groups, swelling was most severe in the first post-operative day and gradually decreased, with the anchor suturing technique showing significant difference of swelling at day three. Conclusions: Changing the method of suturing appear to have no effect on the degree of pain, swelling following surgical removal of impacted mandibular third molars.

Key words: suturing techniques, third molar.
An impacted tooth is one that fails to erupt into the dental arch within the expected time.\(^6\)

The surgical removal of third molar teeth may result in a number of complications including pain, swelling, bleeding, alveolar osteitis (dry socket) or nerve dysfunction.\(^7\)

The factors that usually contribute to such problems are numerous and include the patient factors, tooth-related factors and the surgeon's operative experience and skills.\(^8\)

Different incisions and flap techniques have been proposed in these third molar surgeries to offer a better surgical field, to prevent periodontal problems, and to minimize postoperative discomfort for the patient.\(^9,10\)

It is known that primary closure of the flap avoids suture dehiscence and improves wound healing. The simple loop suture (interrupted interdental button or single button) is a very widely used suturing technique usually preferred by surgeons evaluating the effect of third molar removal on the periodontal health of the adjacent second molar as shown in Figure (1).\(^11\)

![Simple loop suturing technique](image1)

Figure (1):- Simple loop suturing technique \(^16\)

The interrupted vertical mattress suture techniques are most commonly used skin closure methods. This technique provides many advantages, including the closure of wounds under tension when wound edges must be brought together over a distance. Mattress sutures are often performed as the anchoring stitch for skin flap closure as shown in Figure (2).\(^12-15\)

![Vertical mattress suturing technique](image2)

Figure (2):- Vertical mattress suturing technique \(^15\)
The anchor suture is another suturing technique to close a flap located in an edentulous area mesial or distal to a tooth. It is best used in mesial or distal wedge procedures. This suture closes the facial and lingual flaps and adapts them tightly against the tooth as shown in Figure (3). (16)

![Anchor suturing technique](image)

Figure (3):- Anchor suturing technique (16)

The aim of the study is to determine the effect of changing the method of suturing on post-operative complications following the removal of impacted lower wisdom teeth, and to determine the best method of suturing technique associated with less complication.

MATERIALES AND METHODS

This study was carried out at the College of Dentistry, University of Mosul in Oral and Maxillofacial Surgery Department. A case sheet specially designed for this study was filled for each patient. Sixty medically fit patients were randomly selected with an age range between 16–42 years of both sexes. Women patients were excluded if they were pregnant or lactating. These patients had fully soft tissue impacted lower third molars and indicated for surgical extraction. The diagnosis of third molar impaction was based on clinical and standard intraoral periapical and panoramic radiographs. All the cases were performed by the same surgeon, all of the impacted teeth were surgically extracted under local anaesthesia obtained by inferior alveolar, lingual and long buccal nerve block injections using 3.6 ml of 2% xylocaine with 1:80,000 adrenaline. The surgical removal of the impacted teeth was performed following the standard procedure including modified flaps. The socket was irrigated with chlorhexidin 0.2%. Following extraction, suturing of the flap was done. The patients were randomly allocated to three treatment groups; group I included twenty patients; the flap would be closed by simple interrupted
suture technique, and group II closed by vertical mattress suturing technique, and group III anchoring techniques, by using black silk suture 3:0 multifilament three knots of each type, on completion of surgery all patients were given Amoxicillin 500mg capsule (SDI, Iraq) three times daily for three days and Diclofenac sodium 50mg tab (Novartis, UK) three times daily for three days. All groups will be compared in regard to healing by clinical assessment to determine the complications. Post operative pain was assessed subjectively using the visual analogue scale (VAS). The visual analogue scale consists of a 10 cm line anchored at one end by the label ‘No pain’ and at the other end ‘Worst possible pain’. The patient marks on the line the spot for the pain intensity which is then measured. (17)

Assessment of swelling was also subjectively assessed and as follows:

Grade 0= No swelling.

Grade 1= Edema of alveolar mucosa buccally and/or lingually (intraorally).

Grade 2= Edema of alveolar mucosa buccally and/or lingually and involve the cheek (extraorally) to the lower border of the mandible.

Grade 3= Edema of alveolar mucosa buccally and/or lingually and involve the cheek (extraorally) below the lower border of the mandible. (18,19)

Data for pain and swelling recorded for day one, three, seven post operatively.

Statistical analysis of the data was performed using Krusal-Wallis test and Mann-Whitney test and Wilcoxon Signed Ranks nonparametric test. Analysis were performed using SPSS program version 19 windose A highly significant difference was considered at p < 0.01.

RESULTS

The demographic sex distribution and the mean age of all patients included in the present study are shown in Table (1).

<table>
<thead>
<tr>
<th>Group</th>
<th>Type of Suturing Technique</th>
<th>Sex</th>
<th>Total</th>
<th>Age Range</th>
<th>Mean Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Simple</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>17-42</td>
</tr>
<tr>
<td>II</td>
<td>Vertical mattress</td>
<td>9</td>
<td>11</td>
<td>20</td>
<td>17-41</td>
</tr>
<tr>
<td>III</td>
<td>Anchor</td>
<td>6</td>
<td>14</td>
<td>20</td>
<td>16-40</td>
</tr>
</tbody>
</table>
Pain: By using the three types of suturing techniques, the range was nearly equal and decreasing steadily for the following post-operative days.

Swelling: Concerning post-operative swelling, the anchor suturing technique was associated with overt swelling specially at day one and day three. The results are shown in Table (2).

Table (2): Complications distribution in relation to treatment groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Type of Suturing Technique</th>
<th>Pain (mean)</th>
<th>Swelling (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 1 3 7</td>
<td>1 3 7</td>
</tr>
<tr>
<td>I</td>
<td>Simple</td>
<td>4.05 1.15 0.25</td>
<td>1.6 0.95 0.15</td>
</tr>
<tr>
<td>II</td>
<td>Vertical mattress</td>
<td>4.2 1.2 0.4</td>
<td>1.8 1.1 0.15</td>
</tr>
<tr>
<td>III</td>
<td>Anchor</td>
<td>4.05 1.45 0.4</td>
<td>2.1 1.65 0.25</td>
</tr>
</tbody>
</table>

Statistical analysis showed a highly significant difference of swelling at day three, in addition to causing significant swelling at day one and as shown in Tables (3-5).

Table (3): Mann-Whitney Test Simple suturing versus Vertical suturing

<table>
<thead>
<tr>
<th></th>
<th>Pain Score Day 1</th>
<th>Pain Score Day 3</th>
<th>Pain Score Day 7</th>
<th>Swelling Grade Day 1</th>
<th>Swelling Grade Day 3</th>
<th>Swelling Grade Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>182.500</td>
<td>186.000</td>
<td>170.000</td>
<td>184.000</td>
<td>173.000</td>
<td>200.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>392.500</td>
<td>396.000</td>
<td>380.000</td>
<td>394.000</td>
<td>383.000</td>
<td>410.000</td>
</tr>
<tr>
<td>Z</td>
<td>-.490</td>
<td>-.409</td>
<td>-1.000</td>
<td>-.500</td>
<td>-1.104</td>
<td>.000</td>
</tr>
<tr>
<td>P-value</td>
<td>.624</td>
<td>.683</td>
<td>.317</td>
<td>.617</td>
<td>.269</td>
<td>1.000</td>
</tr>
</tbody>
</table>

P-value is significant at < 0.01
Table (4): Mann-Whitney Test Simple suturing versus Anchor suturing

<table>
<thead>
<tr>
<th></th>
<th>Pain Score Day 1</th>
<th>Pain Score Day 3</th>
<th>Pain Score Day 7</th>
<th>Swelling Grade Day 1</th>
<th>Swelling Grade Day 3</th>
<th>Swelling Grade Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>198.000</td>
<td>162.000</td>
<td>170.000</td>
<td>133.000</td>
<td>79.500</td>
<td>180.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>408.000</td>
<td>372.000</td>
<td>380.000</td>
<td>343.000</td>
<td>289.500</td>
<td>390.000</td>
</tr>
<tr>
<td>Z</td>
<td>-.056</td>
<td>-1.099</td>
<td>-1.000</td>
<td>-2.147</td>
<td>-3.688</td>
<td>-.781</td>
</tr>
<tr>
<td>P-value</td>
<td>.955</td>
<td>.272</td>
<td>.317</td>
<td>.032</td>
<td>.000 *</td>
<td>.435</td>
</tr>
</tbody>
</table>

*P- value is significant at < 0.01

Table (5): Mann-Whitney Test Vertical suturing versus Anchor suturing

<table>
<thead>
<tr>
<th></th>
<th>Pain Score Day 1</th>
<th>Pain Score Day 3</th>
<th>Pain Score Day 7</th>
<th>Swelling Grade Day 1</th>
<th>Swelling Grade Day 3</th>
<th>Swelling Grade Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>182.000</td>
<td>176.000</td>
<td>200.000</td>
<td>150.000</td>
<td>90.000</td>
<td>180.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>392.000</td>
<td>386.000</td>
<td>410.000</td>
<td>360.000</td>
<td>300.000</td>
<td>390.000</td>
</tr>
<tr>
<td>Z</td>
<td>-.503</td>
<td>-.686</td>
<td>.000</td>
<td>-1.600</td>
<td>-3.547</td>
<td>-.781</td>
</tr>
<tr>
<td>P-value</td>
<td>.615</td>
<td>.493</td>
<td>1.000</td>
<td>.110</td>
<td>.000 *</td>
<td>.435</td>
</tr>
</tbody>
</table>

*P- value is significant at <0.01

DISCUSSION

In the present study three types of suturing techniques were used to close mucoperiosteal flaps after lower third molar removal and assessing the pain and swelling post operatively, as the two of most common problems encountered by patients after third molar surgery are pain and swelling, (20) this was the main focus of this study.

Simple interrupted suturing is the most common technique used in which both sides of incision require same amount of tension, anchor suturing allows the facial and lingual flaps to be positioned independently from each other, so reducing the time spent for tying knots but need time for removal. (21)

There was no significant difference among the three types of techniques but in other study shows anchor suturing after third molar removal seems to provide better periodontal healing as we disagree with that study probably due to shorter period of follow up. (22) Other study too has same
outcome disagree with us. While other study shows better results when using a sliding sutured triangular flap than when using a mucogingival flap. According to these authors, primary closure of the flap avoids suture dehiscence and improves wound healing. However, in the opinion of other investigators, healing by second intention, where wound drainage is facilitated, causes less patient discomfort.

Other investigation showed hermetic primary closure of the surgical wound causes more postoperative pain and swelling than simple closure with approximation of the margins. Apparently, the flap design and suture technique even with an exposed area distal to the second molar did not result in a periodontal defect if properly carried out. This is an important point because in the suture-less flap technique attached gingiva is not pulled up tightly behind the second molar. On another hand results of other researches indicate that less edema and reduced pain. This study agreed with our results. In general Halsted’s surgical principles of wound healing applies but there are often exceptions. It seems that tight closure over a large bony socket or defect does not facilitate drainage and oral hygiene.

Pain and swelling after surgical removal of impacted third molars are related to inflammation consequence upon surgical trauma. Previous studies show that pain and swelling are influenced by the reflection of a mucoperiosteal flap and the method of wound closure.

CONCLUSIONS

Changing the method of suturing technique appear to have no effect on the post-operative complications following surgical removal of impacted mandibular third molars at day one, three and seven.

REFERENCES

5. Blum IR: Contemporary views of dry socket (alveolar osteitis). A clinical appraisal of standardization, actiopathogenesis, and management: A

22. Burcu OC, Mahmut S, Ferda T, Elif OS, Ferhat M, Influence of different suturing techniques on periodontal health of the adjacent second molars after extraction of impacted mandibular third molars, , August 2009, Pages 156-161.

26. De Brabander EC, Cattaneo G. The effect of surgical drain together with a secondary closure technique on postoperative trismus, swelling and pain after mandibular third molar

