Pre-Emptive Analgesic Effect of Tramadol and Ibuprofen After Impacted Mandibular Third Molar Extraction

Bara S. Minwah
Department of Oral and Maxillofacial Surgery
College of Dentistry, University of Mosul

ABSTRACT

Aims: to evaluate the efficacy of analgesia produced by preoperative administration of tramadol or ibuprofen on surgically extracted mandibular 3rd molars. Materials and Methods: surgical removal of lower 3rd molar was performed in 30 patients, they were divided into three groups of ten patients each. Group I: preoperative 100mg tramadol IM injection; Group II: preoperative 800 mg Ibuprofen orally; Group III: control group with no preoperative treatment. Analgesia was assessed by visual analogue scale (VAS), Verbal pain Scale (VPS), patient satisfaction (PS), amount of analgesic consumption and time elapsed before first intake were recorded after 24 hours. Results: There was significant differences between tramadol and control group in all types of pain scales in favor of tramadol group. There was significant difference in the visual analog scale (VAS) number and time of tablets needed during 24 hours between Ibuprofen and control group. There was significant difference between Tramadol and Ibuprofen groups in both of (VAS) and (VPS) in favor of Tramadol group. Conclusions: The use of tramadol or ibuprofen preemptively is effective method of postoperative pain control in impacted lower 3rd molar surgery.

Key words: preemptive analgesia, impacted mandibular third molar

INTRODUCTION

The removal of impacted third molar is the most common oral surgical operation, and the postoperative course can be complicated (1). post-operative complications may include swelling, bruising and limited mouth opening but patients are most often concerned about postoperative pain which may be severe (2,3). The post-operotive pain severity may be anticipated from the nature of surgery.
Patients who require bone removal will experience severe pain. The patient should be advised before surgery for the anticipated postoperative pain and also the planned strategy to manage it. So, postoperative pain management should be planned \(^2\). Despite major progress in pain management, postoperative pain remains a clinical problem, that may extend the recovery period and predispose patients to expensive, time-consuming complication \(^4\). Poorly managed postoperative pain contribute to patient dissatisfaction with their surgical experience, and yet pain management is frequently suboptimal \(^2\).

Preemptive analgesia concept was introduced by Crile at the beginning of the last century \(^5\). It was noted that blocking the transmission of pain before surgical incision reduced postoperative mortality \(^6\). Preemptive analgesia is the administration of an analgesic before a painful stimulus, that occurs due to tissue damage during surgery, in an attempt to obtain better pain relief compared with when the same analgesic is used after the painful stimulus \(^7\), \(^8\).

Tramadol has been found to be a suitable analgesic for use in moderate pain after oral surgery \(^3\). Tramadol, a centrally acting opioid analgesic, is agonist of \(\mu\) opioid receptor \(^9\). On the bases of its potency, tramadol has comparatively few disadvantage associated with other opiates, such as cardiovascular reactions, respiratory depression and physical dependency \(^10\). Tramadol is a narcotic (opioid) used to control moderate and severe pain. Vertigo, nausea, vomiting, headache and xerostomia are the reported side effects of this drug \(^11\). Non-steroidal anti-inflammatory drugs (NSAIDs) provide effective analgesia in patient with acute pain after surgery, either as a substitute or as an adjunct to opioid analgesia. The major advantage of NSAIDs is relatively well tolerability in selected patients for short term postoperative analgesia \(^10\). Ibuprofen as a NSAIDs drug was reported to control pain and is more tolerable than other drugs of the group \(^11\).

This study was performed to compare the preemptive analgesic effect of ibuprofen (non opioid) and tramadol (opioid) in patient undergoing surgical removal of impacted lower third molar.

MATERIALS AND METHODS

This study performed in department of oral and maxillofacial surgery of dentistry college, Mosul university, Iraq. The study was approved by the scientific committee of the department. The inclusion criteria consider healthy subjects of any sex, >18 years of age, with impacted mandibular third molar requiring surgical removal, and with no history of psychiatric illness or allergy to the drugs used in this study. Exclusion criteria included the use of analgesic or anti-
inflammatory drugs 24 hours before the surgical treatment, patient with gastritis or peptic ulcer.

Patients group: A double blind randomized study was carried out on a total number of thirties patients who included in this research. Randomization were done by another surgeon.

The study comprise of three groups of 10 patients each. One group (control group) consist of patients receiving nothing in the preoperative setting (prior to surgery) followed by paracetamol 500mg tablets in the postoperative setting at need only (when there is intolerable pain) for 24 hours. Second group had patient receiving Ibuprofen 800 mg in the preoperative setting (one hour prior to surgery) and post operative setting of paracetamol 500 mg tablets at need. The third group consist of patients receiving 100 mg tramadol i.m injection 1 hour preoperatively, and post operative setting of paracetamol at need.

Surgical procedure: The same surgeon performed the surgical removal of impacted teeth of all the patients. Surgery was carried out under local anesthesia, using a maximum of 3 1.8 mL cartridges of 2% xylocain with 1:180,000 adrenalin. A mucoperiosteal flap was elevated distally to the second molar providing access to the lower 3rd molar from the buccal aspect. Bone removal was achieved using new round bur with rotary hand piece under copious continuous sterile saline irrigation. When it is needed, sectioning of crown and roots was performed with a fissure bur hand piece. After removal of the tooth, the socket was inspected and irrigated with sterile normal saline irrigation. Suturing was achieved by single stitch 3-0 black silk suture. Post operatively all patients received 500mg amoxicillin every 8 hours for 5 days or azithromycin 500 mg orally daily for 5 days to prevent post operative infection.

Pain scale measurement: Patients were given routine post operative instructions and were asked to fill a 4 parts questionnaire: 1) evaluation of the pain intensity using of a 100 mm visual analog scale (VAS) at 24 hours post operatively, with 0 anchored by no pain and 100 is a very intense pain. 2) evaluation of pain intensity with the use of the 5-points verbal pain scale scoring as 0: no pain, 1: mild pain, 2: moderate pain, 3: severe pain and 4: as a very severe pain; 3) amount of analgesic consumption and time elapsed before first intake; 4) patient satisfaction as (yes) or (no).

Statistical analysis: Data were loaded on Pentium IV computer and analyzed using Statistical Package for Social Sciences (SPSS) Program Version 13.0. Analysis included descriptive statistics (frequency and percentages for non-parametric data, and mean and standard deviation for parametric ones); and analytical statistics.
(Mann–Whitney Test for non–parametric data, and Duncan's Multiple Range Test for parametric ones). Differences between groups were considered statistically significant when \(p \leq 0.05 \) level.

RESULTS

1- Comparing Tramadol and Control group:

Using Mann- Whitney test there was significant differences between tramadol and control group in all of visual analog scale (VAS), verbal pain scale (VPS) and patient satisfaction in favor of tramadol group as in table (1).

<table>
<thead>
<tr>
<th>Table (1): tramadol versus control group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Mann-Whitney U</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>

Using Duncan's Multiple Range Test there was significant differences between the tramadol and control groups in number of tablets (table 2) and time of tablets needed during 24 hours as in table (3).

<table>
<thead>
<tr>
<th>Table (2): No. of Tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tramadol</td>
</tr>
<tr>
<td>Ibuprofen</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table (3): Time for Tablets to be Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Ibuprofen</td>
</tr>
<tr>
<td>Tramadol</td>
</tr>
</tbody>
</table>

1- Comparing Ibuprofen and Control groups

Using Mann-Whitney Test there was significant difference in the visual analog scale (VAS) between Ibuprofen and control group but there was no significant differences regarding verbal pain scale (VPS) and patient satisfaction .as in table (4).
Table (4): Ibuprofen vs. Control

<table>
<thead>
<tr>
<th></th>
<th>VAS</th>
<th>VPS</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>27.500</td>
<td>27.500</td>
<td>45.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.033</td>
<td>-1.849</td>
<td>-0.457</td>
</tr>
<tr>
<td>p-value</td>
<td>0.042*</td>
<td>0.064</td>
<td>0.648</td>
</tr>
</tbody>
</table>

Using Duncan’s Multiple Range Test there was significant differences between the Ibuprofen and control groups in number of tablets as in (table 2) and time of tablets needed during 24 hours as in table (3).

2- Comparing Tramadol versus Ibuprofen groups
Using Mann-Whitney Test there was significant difference between Tramadol and Ibuprofen groups in both of (VAS) and (VPS) in favor of Tramadol group, but there was no significant difference in patient satisfaction, as in table (5).

Table (5): Tramadol vs. Ibuprofen

<table>
<thead>
<tr>
<th></th>
<th>VAS</th>
<th>VPS</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>9.500</td>
<td>21.500</td>
<td>35.000</td>
</tr>
<tr>
<td>Z</td>
<td>-3.454</td>
<td>-2.374</td>
<td>-1.831</td>
</tr>
<tr>
<td>p-value</td>
<td>0.001*</td>
<td>0.018*</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Using Duncan’s Multiple Range Test there was no significant differences between the tramadol and Ibuprofen groups in both number of tablets, as in (table 2) and time of tablets needed during 24 hours, as in table (3).

3- Operation time of all the groups:
Using Duncan's Multiple Range Test there was no significant differences between the tramadol, Ibuprofen and control groups in time of the operation (in minutes from beginning of incision to the last stitch of suturing), as in table (6).
DISCUSSION

Third molar extraction represent a standard model for predicting the clinical efficacy of analgesic\(^{(12)}\). Severe pain and average pain were related to the depth of tooth and the difficulty of extraction \(^{(1)}\). Because 3\(^{rd}\) molar surgical pain is so predictable, it has been suggested that prevention of pain is a better management strategy than treating pain once it has occurred \(^{(12)}\).

The topic of preemptive analgesia is controversial, with reports in favor of it as well as against it. Therefore some guidelines have been developed to assess the quality of reports of randomized clinical trials in pain research \(^{(13)}\). Transmission of pain signals evoked by tissue damage leads to sensitization of the peripheral and central pain pathways. Preemptive analgesia is a treatment that is initiated before the surgical procedure in order to reduce this sensitization. Consequently, immediate postoperative pain may be reduced and the development of chronic pain may be prevented \(^{(14)}\).

Pain receptors may be stimulated by mechanical damage, extremes of temperature, or by irritating chemical substances. When pain receptor in peripheral tissues (such as mucosa) are stimulated, the nociceptive (pain) impulses are transmitted by two types of neurons to the spinal cord in the dorsal horn. The second order neurons, arising from the dorsal horn and pass via the spinothalamic tract to terminate in the thalamus, from which neuronal relays are sent to other CNS centers and the sensory cortex. These higher centers are responsible for the perception of pain and the emotional components that accompany it. There are four distinct processes in the sensory pathway: transduction, transmission, modulation and perception. Each of these processes presents a potential target for analgesic therapy \(^{(5)}\). So in this study Ibuprofen which is peripherally acting and Tramadol which is centrally acting analgesics were used to be assessed and compared as a preemptive analgesia.

From a conceptual standpoint, local anesthesia in itself is a preemptive analgesia, as it blocks the nerve impulse before starting the surgical incision. Thus we must consider that local anesthetic inhibits pain sensation both during and at the first hours after surgery \(^{(6)}\). Accordingly in this study, a placebo was not given for the control group.

This study shows that intramuscular
Tramadol has a better analgesic efficacy in
the prevention of post operative pain than
oral ibuprofen and that of local anesthesia
alone, however ibuprofen provide
relatively good analgesia. This is agree
with Ong et al in their study when they
found that intra venous tramadol give
better post operative analgesia than oral
tramadol (15). Josh et al were use ibuprofen,
paracetamol, codeine, diclofenac and
placebo as a preemptive analgesia, they
reach an interesting finding that patients
who had taken placebo reported similar
results to the preemptive analgesic groups
(16).

It should be emphasized that VAS
scores and other measures of pain
may be influenced by side effects of the
drug and other confounding variables, and
may not be reliable as the sole measure in
the study of preemptive analgesia (14). The
visual analogue scale is widely used in the
measurement of both acute and chronic
pain, as it simple to use and provides an
accurate indication of the extent of pain
(20). Accordingly in this study more than one
scale were depended.

Regarding time elapsed before first
need or intake of analgesic, in this study,
the median time to rescue medication was
4.88 hours in the tramadol group, 4.7
hours in the Ibuprofen group and 2.2 hours
in the control (local anesthesia) group.
This results was coordinated with duration
of action of tramadol, Ibuprofen and
xylocain. It has been suggested that most
patients would require analgesics 1-3
hours postoperatively following 3rd molar
surgery using a conventional local
anesthetic, this trend was further reflected
by the significantly increased paracetamol
consumption of rescue analgesics in the
control group (15). However, it should be
noted that pain for 3rd molar surgery
usually peaks at 6-8 hours after surgery (15).
Thus the analgesic effects of intramuscular
tramadol and that of ibuprofen would be
decreasing just at the time when the post
operative pain should be expected to peak.
Hence additional rescue analgesics are
required for good postoperative pain
management (15).

Regarding number of analgesic
tables required postoperatively during 24
hours, in this study the control group
required a mean of 3.6 tablets, Ibuprofen
group required a mean of 2.3 tablets while
tramadol group need a mean of 1.5 tablets.
This indicated that the consumption of
analgesics was significantly reduced in the
preemptive groups.

Kaczmarzyk, et al, in 2010 reached
that ketoprofen administered after third
molar surgery provide more effective pain
control than ketoprofen administered
before the surgery (21,22). Shaik MM
concluded that tramadol is a suitable and
safe analgesic for the relief of post
operative pain and is more effective than
ketorolac with prolonged analgesia and
minimal side effects (17), whereas Close
BR concluded that Tramadol does not
offer any particular benefits over existing
analgesics and just recommended when
NSAIDs are not allowed to be administered for a patient\(^\text{18}\).

More refined studies are needed to establish whether the timing of administration and the mode of application (local anesthetic alone, NSAIDs alone, Opioid or combination) will be more effective, keeping in mind the possible rare adverse effects \(^\text{19}\).

CONCLUSIONS

The main finding in this study is that in patient undergoing surgical removal of an impacted mandibular 3\(^{rd}\) molars, preemptive treatment with intramuscular tramadol did not result in a predictable decrease in postoperative pain compared with 800mg ibuprofen tablet, whereas both preemptive groups were significantly superior in pain reduction than control group. So the use of tramadol or ibuprofen preemptively is economical, effective, easy and safe method of postoperative pain control in impacted lower 3\(^{rd}\) molar surgery.

REFERENCES

9- Hassan SS, Ahmed A, Rai M and Kalapa TM. Analgesic Efficacy of Tramadol and Butorphanol in Mandibular Third Molar

Minwah BS
