ABSTRACT

Aims: The goals of this research was to evaluate the effects of Platelet Rich Fibrin (PRF) in reducing postsurgical complications as pain, swelling, and trismus after surgical extraction of impacted lower third molars.

Materials and Methods: A total of 44 patients who fulfilled the inclusion criteria were chosen to take part in this research. Postoperative pain was assessed using a numerical rating scale (NRS). Facial swelling was measured by a modification of tape measure method. To assess trismus, the maximal interincisal mouth opening was measured by using a digital caliper scale (electronic vernier). **Results:** In the Platelet Rich Fibrin PRF group; the results showed a significant difference of levels of pain experienced (NRS) in the 1st postoperative day in comparison to the control group. In regard to postoperative swelling; a significant decrease in the 3rd postoperative day was observed in comparison to the control group. With regard to trismus; no significant differences between groups regarding interincisal mouth opening was noticed. **Conclusions:** The application of PRF reduces the severity of the immediate postoperative sequelae.

Keywords: Mandibular third molar, PRF, postoperative sequelae.

INTRODUCTION

The main complications that may follow the removal of mandibular third molars by surgery are inflammation, delayed wound healing, facial swelling, pain, and trismus. Multiple studies have focused on reducing such complications (1).

Some of these studies concentrated on the use of drugs. For example, studies have demonstrated the beneficial effect of the use of nonsteroidal and steroidal anti-inflammatory drugs following surgery in minimizing edema and trismus (2, 3). Nevertheless, these drugs may result in significant systemic side effects and are contraindicated in some patients due to their potential side effects such as delayed wound healing, adrenal suppression, and increased susceptibility to infection (4, 5). These issues have encouraged researchers to look for biological alternatives such as platelet rich fibrin.

Platelet rich fibrin (PRF) clots, were developed by Choukroun et al. (6). Platelet rich fibrin consists of a polymerized fibrin matrix in a trimolecular system containing platelets, leukocyte, cytokines, and circulating stem cells (7). Such a complex makes PRF a curative biomaterial that favors soft tissue and bone regeneration (8). Several studies have shown that PRF has facilitated the healing of wounds such as following the removal of cysts, sinus augmentations and periodontal defects (6, 9, 10). The goal of this clinical trial was to investigate whether there is any beneficial value of local application of platelet rich fibrin clot on the postoperative swelling, pain, and trismus.

MATERIALS AND METHODS

Patient selection:

The study was a randomized, blinded, prospective study conducted at Erbil Dental Collective, Erbil, Iraq. Forty four patients aged between 18-29 years old were enrolled in this study following an informed verbal and written consent. The patients had either (vertical, mesioangular or horizontal) types of impaction according to Winter’s classification and class II level B according to Bell and Gregory classification of impaction with partial or total bone cover.

Inclusion criteria were:
1- Patients that fulfilled the research demands including follow-up sessions and informed signing of consent.
2- Patients without systemic diseases.
3- Patient with no history of bleeding problems.
4- Patients free from allergies.

Exclusion criteria:
1- Patients on chronic medications such as steroidal and non-steroidal anti-inflammatory drugs, antihistamines, and other drugs that might affect evaluation of postoperative response.
2- Presence of acute infection such as pericoronitis and / or pain on the tooth site.
3- Pregnant and lactating women.
4- Patients that fulfilled the demands, but at surgery the procedure take more than one hour time.

Study design

In order to minimize differences, all patients were operated by the same oral surgeon with a standardized surgical technique and equipment. Patients were divided randomly into 2 groups: study group and control group. In the study group (22 patients) platelet rich fibrin clot applied into the socket, and in the control group (22 patients) nothing was applied into the socket.

Preparation of PRF

Prior to giving anesthesia, 2 tubes of ten ml venous blood were collected from each patient in glass coated plastic tubes (AYSET/turkey) and immediately centrifuged (800 electric centrifuge/china) at 3000 rpm for 10 minutes according to Choukroun’s method. At completion of centrifugation cycle, the tubes were collected and caps of tubes removed. The blood sample separates into three visible layers: an acellular plasma at the top of the tube; a strongly polymerized fibrin clot is formed in the middle; and blood cells (red corpuscle base) are gathered at the bottom of the test tube, as shown in Figure (1).

![Figure (1): Glass coated plastic tube with three layers: Top layer (acellular plasma); Middle layer (PRF clot); Basal layer (red corpuscular base).](image1)

The tubes were placed in a tube rack, allowing the formed clot to mature for approximately 4-8 minutes (11). The middle layer (PRF clot) was removed using sterile tweezers and separated by scissors from the underlying red corpuscular base, as shown in Figure (2).

![Figure (2): The middle layer (PRF clot) removed by using sterile tweezers](image2)
Surgical procedure:

Routine regional anesthesia was applied including inferior alveolar nerve block together with buccal infiltration anesthesia. Two cartilages of lidocaine hydrochloride 2% solution with 1:80,000 epinephrine (septodent, France) were used. After incision, a mucoperiosteal soft tissue flap was reflected laterally and bone osteotomy with straight handpiece bur coupled with copious saline irrigation was done. Sometimes according to type of tooth angulation as in horizontal type, sectioning and separation of tooth crown was done. Following tooth extraction, sharp edges were smoothed with bone file, the socket irrigated and debrided mechanically. In the study group, platelet rich fibrin clot was removed with sterile tweezers and separated from the underlying red corpuscular base by using scissors and then transferred to the extraction socket, as shown in Figure (3).

![Figure (3): PRF clot transferred by sterile tweezers to the bony socket.](image)

Nothing was applied in the control group bony socket. The flap was repositioned and sutured with silk 3/0. Gauze pressure packs were applied to the operation site to aid in hemostasis. All patients were instructed to eat soft and cold diet for the first 24 hours after operation and instructed not to gargle for the first postoperative day. Postoperatively, amoxicillin 1 gm twice per day for 5 days with paracetamol 500 mg every eight hours for 2 days after operation was given to each patient.

Postoperative evaluation:

Postoperative evaluation of swelling, pain, and trismus were done for all patients. Postoperative assessment of facial swelling was taken with a modification of the tape measure method described by Gabka and Matsumara (12) before surgery as a base line and at 1st, 3rd, and 7th postoperative days. Linear measurements were made from angle of mandible (AM) to:

1- Tragus (T)
2- Lateral canthous of eye (CE)
3- Lateral border of ala of nose (AN)
4- Corner of mouth (CM)
5- Soft tissue pogonion (P).
Five different measurements were recorded. All measurements were taken before operation and on the 1st, 3rd, and 7th days after operation (13), as shown in Figure (4).

![Figure (4): The measurement points AM: Angle of mandible, T: Tragus, CE: Lateral corner of the eye, AN: Lateral border of ala of nasi, CM: Corner of the mouth, P: Soft tissue pogonion](image)

Measuring postoperative pain was recorded using a numerical pain scale (NRS), which has 10 units number line marked by degrees. Score of 0 indicated “absence of pain” and score of 10 indicated “excessive pain” while intermediate scores indicated “moderate pain”.

The patients were educated about the meaning of scores at the beginning and were asked to express their intensity of pain by placing a mark on the scale. Pain measurements was done on the 1st, 3rd, and 7th postoperative days.

Pre and postoperative degree of mouth opening were used to determine the degree of trismus. Maximal interincisal mouth opening was measured using an electronic digital caliper (electronic vernier /china). Postoperative measurements were done on 1st, 3rd, and 7th days.

Statistical analysis was carried out using Social Sciences Statistics System (SPSS). Descriptive statistics including mean values and standard deviations were determined for all variables in the PRF and control groups. Data were initially tested for normal distribution using the Shapiro–Wilk test. The kruskal Wallis test and Friedman test were used for the comparison of mean pain scores. Additionally, Mann-Whitney U test and repeated measures test were used to assess statistical differences between groups for non-normally distributed variables (swelling and trismus). For all tests, a probability of less than 0.05 for the 95% confidence level was selected as the level of significance.

RESULTS

A total of 44 patients (15 male: 29 female) were included in this study. The age range was 18-29 years; median age was 24 years, and mean ±SD age was (23.9± 3.2). Patients distributed equally and without bias into two
groups: Control and PRF. Patients were recalled on the postoperative 1st, 3rd, and 7th days after surgical extraction of impacted mandibular third molar to evaluate pain, facial swelling, and trismus. Pain scores on NRS are shown in Table (1).

Table (1): Pain scores on NRS for postoperative 1st, 3rd, and 7th days for in Control and PRF groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Postoperative pain score</th>
<th>Friedman test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Day Mean ± SD</td>
<td>3rd Day Mean ± SD</td>
</tr>
<tr>
<td>Control</td>
<td>6.95±2.68</td>
<td>3.68±2.42</td>
</tr>
<tr>
<td>PRF</td>
<td>4.41±2.09</td>
<td>2.27±1.58</td>
</tr>
</tbody>
</table>

Kruskal-Wallis test

<table>
<thead>
<tr>
<th>H</th>
<th>p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>H=11.973</td>
<td>0.001*</td>
</tr>
<tr>
<td>H=4.087</td>
<td>0.051</td>
</tr>
<tr>
<td>H=0.301</td>
<td>0.583</td>
</tr>
</tbody>
</table>

*p Statistically significant at confidence level 95%

On the 1st, 3rd, and 7th postoperative days, NRS scores decreased significantly in both groups over postoperative days with p value (p=0.000). However, the PRF group showed statistically significant less pain compared to control group just on the 1st postoperative day with p values (p=0.001).

Assessment of facial swelling for each patient on each postoperative day was determined by finding the mean differences between postoperative and preoperative measurements. The results are presented in Table (2).

Table (2): Facial swelling on postoperative 1st, 3rd, and 7th days in Control and PRF groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Postoperative facial swelling (mm)</th>
<th>Repeated Measures test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Day Mean ± SD</td>
<td>3rd Day Mean ± SD</td>
</tr>
<tr>
<td>Control</td>
<td>5.85±1.38</td>
<td>3.58±1.25</td>
</tr>
<tr>
<td>PRF</td>
<td>4.95±0.86</td>
<td>2.50±0.74</td>
</tr>
</tbody>
</table>

Mann Whitney test

<table>
<thead>
<tr>
<th>U</th>
<th>p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>U=146</td>
<td>0.061</td>
</tr>
<tr>
<td>U=105.5</td>
<td>0.001*</td>
</tr>
<tr>
<td>U=178</td>
<td>0.117</td>
</tr>
</tbody>
</table>

*p Statistically significant at confidence level 95%
The maximum swelling in control and PRF groups were found in the 1st postoperative day with mean swelling equal to 5.85 mm and 4.95 mm respectively. However, the level of swelling was significantly decreasing over the days of review with \(p = 0.00 \). On the 7th postoperative day, the swelling in both groups returned to normal levels with values less than 1 mm. On the other hand, patients with PRF applied in their bony sockets showed a significantly less facial swelling than control group just on the 3rd postoperative day with \(p = 0.001 \).

Maximum mouth opening (interincisal distance) was recorded in every recall appointment. For each patient, the interincisal opening on each postoperative day was measured by calculating the differences between preoperative and postoperative measurements of the interincisal opening. Table (3) displays the outcomes in each group and it is clearly shown that the degree of mouth opening in both control and PRF groups significantly decreased over the postoperative (1st, 3rd, and 7th) days with \(p = 0.00 \). However, there were no significant differences in changes in interincisal opening values between control and PRF groups with \(p \) values equal to (0.33, 0.159, and 0.896) for the 1st, 3rd, and 7th postoperative days respectively.

Table (3): Trismus on postoperative 1st, 3rd, and 7th days in Control and PRF groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Postoperative trismus (mm)</th>
<th>Repeated Measures test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Day Mean ± SD</td>
<td>3rd Day Mean ± SD</td>
</tr>
<tr>
<td>Control</td>
<td>12.55±7.05</td>
<td>9.00±6.46</td>
</tr>
<tr>
<td>PRF</td>
<td>10.57±7.61</td>
<td>7.22±7.30</td>
</tr>
<tr>
<td>Mann Whitney test</td>
<td>U= 200.5</td>
<td>U= 182</td>
</tr>
<tr>
<td>(U)</td>
<td>p= 0.330</td>
<td>p= 0.159</td>
</tr>
</tbody>
</table>

Statistically significant at confidence level 95%

DISCUSSION

Impacted third molar removal by surgery causes injury of the soft tissue and bony structures in the oral cavity. Signs and symptoms of edema, pain, and limited opening of the mouth after operation can occur due to muscle spasm\(^{15,16}\).

Choukroun described PRF which is naturally prepared without the addition of thrombin\(^6\). PRF presents a complex of
trimolecular architecture, with cytokines, platelets, leukocytes and circulating stem cells trapped within it \(^7\). PRF acts as a scaffold that is able to guide epithelial cell migration and in carrying cells involved in tissue regeneration \(^{17,18}\).

An essential coagulation glycoprotein called (thrombospondin-1) and three main growth factors involving vascular endothelial growth factor (VEGF), transforming growth factor \(\beta-1\), platelet-derived growth factor (PDGF) are released from PRF for 1 week duration after application \(^{19}\). In addition to these, PRF also secrete other types of factors of growth including epidermal growth factor, fibroblast growth factor, and three substantial proinflammatory cytokines- IL-1b, IL-6, and TNF-\(\alpha\) which is obtained with a simple centrifugation procedure. These constituents make PRF a curative biomaterial that enables optimal healing through the fast and effective regeneration of hard and soft tissues \(^{6,19,20}\).

Contrasting results regarding the clinical efficacies of PRF in oral surgical procedures have been reported in different clinical procedures \(^{8,21-23}\).

The purpose of the current study was to achieve postoperative satisfaction of patients by using an autologous biomaterial with minimal adverse reactions. After extraction, relieving of postoperative pain is an essential criterion, in addition most of the potential postoperative complications are manifested as pain. In the present study, the degree of pain was measured using the NRS. The results of this study showed that local application of PRF into the extraction sockets provide a significant decrease in pain just in the 1st postoperative day.

Many studies in the literature reported that PRF reduces symptoms of pain such as Al-Hamed et al.\(^{24}\) which showed that PRF significantly reduced postoperative pain and analgesic intake following surgical removal of impacted third molars for few postoperative days. This should be considered with caution because it is based on the subjective visual analogue scale, sensation of pain, and response to analgesics, which differ from person to another. In another study conducted by Kumar et al. \(^{20}\) to evaluate the effect of platelet-rich fibrin (PRF) on post-operative pain, swelling, and trismus on the first post-operative day, one month and at three months, they showed that pain was significantly lesser in the study group at the 1st postoperative day as compared to the control group. In support to this, a study conducted by Marenzi et al. \(^{25}\) concluded that the use of L-PRF in postextraction sockets is an efficient and useful procedure for the management of postoperative pain, particularly in the first days following extraction.

On the contrary, Ozgul et al.\(^{26}\) conducted a study to assess the efficacy of PRF in the healing process by assessing changes in pain and swelling following third molar
surgery. Their results did not reveal any beneficial effect of PRF in reducing pain between groups, where different patients made up the control and PRF groups. The null hypothesis partially dismissed the results of the study since there was no positive effect of PRF on the pain observed. Similar to this, Singh et al.\(^{(19)}\) placed PRF in extraction sockets following extraction and concluded that despite pain was less in the study side compared to control side, yet there was no statistical significance.

Most of the surgical procedures induce edema. Swelling usually reaches its maximum at 1-2 days after the surgery; it begins to subside on the third or fourth day and usually ends on the first week\(^{(27)}\). In this study, swelling was significant at the 3\(^{rd}\) postoperative day only. Ozgul et al.\(^{(26)}\) study results indicated that PRF was more effective in reducing swelling in the third day after surgery. Kumar et al.\(^{(20)}\) also reported that use of PRF in extraction socket resulted in reduction of edema after 1\(^{st}\) postoperative day.

In contrast to this, Bilginyilar et al.\(^{(28)}\) found no differences in swelling between PRF and control groups. They attributed that for using a tape measure for measuring variations in swelling. In support to this, Ogundipe et al.\(^{(29)}\) used PRP gel after extraction of third molar and noticed that PRP reduced pain, swelling, and trismus compared to control group but the differences were statistically significant only for postoperative pain and was not significant for postoperative swelling.

CONCLUSIONS

PRF appears to be effective in reducing postoperative swelling and pain following third molar removal. However, the effects were significant for few postoperative days.

REFERENCES

15- Grossi GB, Maiorana C, Garramone RA, Borgonovo A, Creminelli L,

25- Marenzi G, Ricciatiello F, Tia M, Lauro G, Sammartino G. Influence of leukocyte- and platelet-rich fibrin (L-PRF) in the healing of simple...

